1 How many molecular ion peaks (parent ion peaks) are in the mass spectrum of

1,2-dibromoethane?

Assume the only isotopes present are ¹H, ¹²C, ⁷⁹Br and ⁸¹Br.

- 🛛 **A** 1
- **B** 2
- **C** 3
- **D** 4

(Total for Question = 1 mark)

2 This question is about two isomeric alcohols and two isomeric carbonyl compounds.

Butan-1-ol, CH₃CH₂CH₂CH₂OH Butan-2-ol, CH₃CH₂CH(OH)CH₃ Butanal, CH₃CH₂CH₂CHO Butanone, CH₃CH₂COCH₃

- (a) Which of these compounds would **not** produce a colour change when heated with acidified sodium dichromate(VI) solution?
- 🖾 A Butan-1-ol
- 🖾 B Butan-2-ol
- 🖾 C Butanal
- D Butanone
- (b) Which compound could give a peak at m/e = 31 in its mass spectrum?

(1)

(1)

(1)

- 🛛 A Butan-1-ol
- 🖾 **B** Butan-2-ol
- 🖾 C Butanal
- 🖾 **D** Butanone
- (c) Which compound could **not** give a peak at m/e = 43 in its mass spectrum?
- 🖾 A Butan-1-ol
- 🛛 **B** Butan-2-ol
- 🖾 C Butanal
- **D** Butanone *PhysicsAndMathsTutor.com*

Use the infrared absorptions, in wavenumbers, to identify the compound.

Bond	Wavenumber range / cm ⁻¹	
O—H (alcohol)	3750 – 3200	
C—H (alkane)	2962 – 2853	
C—H (aldehyde)	2900 – 2820 and 2775 – 2700	
C=O (aldehyde or ketone)	1740 – 1680	

The compound with this IR spectrum is

(1)

- **■ A** butan-1-ol.
- **B** butan-2-ol.
- C butanal.
- **D** butanone.

- 3 The correct sequence for the processes that occur in a mass spectrometer is
 - A vaporization, ionization, acceleration, deflection and detection.
 - **B** vaporization, acceleration, ionization, deflection and detection.
 - **C** ionization, vaporization, acceleration, deflection and detection.
 - **D** ionization, vaporization, deflection, acceleration and detection.

(Total for Question = 1 mark)

- 4 Which of the following ions would be deflected **most** in a mass spectrometer?
 - ▲ ³⁵Cl⁺
 - **B** ³⁷Cl⁺
 - C ³⁷Cl²⁺
 - **□ D** (³⁵Cl —³⁷Cl)⁺

(Total for Question = 1 mark)

- **5** In a mass spectrum of butane, $C_4H_{10'}$ where would a peak be seen for the molecular ion if it had a charge of 2+?
 - 🖾 **A** 29
 - **B** 56 **B** 56
 - 🖸 **C** 58
 - **D** 60

6 The formula for oleyl alcohol, which is present in sperm whale oil and was used as a lubricant, is shown below.

- (a) The systematic name for oleyl alcohol is
- **A** *E*-octadec-9-en-1-ol.
- **B** *Z*-octadec-9-en-1-ol.
- C *E*-octadec-8-en-1-ol.
- D Z-octadec-8-en-1-ol.
- (b) Which intermolecular forces are present between oleyl alcohol molecules?
- A London forces only
- **B** Hydrogen bonds and London forces only
- C Hydrogen bonds and permanent dipole-dipole forces only
- **D** Hydrogen bonds, permanent dipole–dipole and London forces
- (c) Which of the following is the most likely structure of the species to cause a peak at m/e 31 in the mass spectrum of oleyl alcohol?
- A CH₃O
- B CH,OH
- \square C CH₃O⁺
- **D** CH,OH⁺
- (d) What would you expect to see if oleyl alcohol is tested separately with bromine water and heated with acidified sodium dichromate(VI) solution?

	Bromine water	Acidified sodium dichromate(VI) solution	
Δ	Decolorises	Turns green	
B	No colour change	No colour change	
🖾 C	Decolorises No colour change		
D	No colour change	No colour change Turns green	

(Total for Question = 4 marks)

(1)

(1)

(1)

- **7** Bromine has two isotopes with relative isotopic masses 79 and 81. Which of the following values for mass/charge ratio could correspond to a peak in the mass spectrum of bromine, Br₂? You should assume the ions detected have a single positive charge.
 - 🖾 **A** 79.9
 - **B** 80
 - 🖸 **C** 159
 - **D** 160

(Total for Question = 1 mark)

8 The concentration of a solution of potassium iodate(V) can be determined by the liberation of iodine, followed by titration with sodium thiosulfate.

A suitable indicator is

- A methyl orange.
- **B** phenolphthalein.
- **C** starch.
- **D** universal indicator.

(Total for Question = 1 mark)

9 The thermite reaction, shown below, is a useful industrial process.

$$Fe_2O_3(s) + 2AI(s) \rightarrow 2Fe(I) + AI_2O_3(s)$$

The iron in this reaction undergoes

- A disproportionation.
- **B** oxidation.
- \Box C redox.
- \square **D** reduction.

10 This question is about the following isomeric compounds with the molecular formula $C_{A}H_{O}O$ and molar mass 72 g mol⁻¹. A CH,CH,CH,CHO **B** (CH₃)₂CHCHO CH,CH,COCH, С D CH,CH=CHCH,OH (a) Which compound would you expect to give a peak at m/e = 41 in its mass spectrum? (1) B **C** D (b) Which compound would NOT react with an acidified solution of potassium dichromate(VI)? (1) Α 🖾 B C D (c) Which compound would give a pale yellow precipitate when reacted with iodine in alkaline solution? (1) A B C D (d) Which compound can be reduced to give a chiral product? (1) Δ Α B **C** 🖾 D

PhysicsAndMathsTutor.com

(e) Which compound would NOT react with hydrogen cyanide under suitable conditions to form a hydroxynitrile?

(1)

A
B
C
D

(Total for Question = 5 marks)

- **11** There would be a major peak in the mass spectrum for butan-1-ol, CH₃CH₂CH₂CH₂OH, but **not** for butan-2-ol, CH₃CH₂CH(OH)CH₃, at *m/e* value
 - **A** 15
 - **B** 17
 - **C** 29
 - **D** 43

(Total for Question 1 mark)

12 How many molecular ion peaks (parent ion peaks) occur in the mass spectrum of 1,2-dibromoethane, CH₂BrCH₂Br?

Assume the only isotopes present are ¹H, ¹²C, ⁷⁹Br and ⁸¹Br.

- 🛛 A 1
- **B** 2
- **C** 3
- **D** 4

13 Which of the following features is shown by the mass spectra of propanone and propanal?

propanone

propanal

		m/e of the molecular ion	Fragmentation pattern
\times	Α	same	same
\mathbf{X}	В	same	different
\mathbf{X}	С	different	same
\times	D	different	different

14 The mass spectrum for a sample of a metal is shown below.

The relative atomic mass of the metal is

- **A** 63.2
- **B** 63.4
- C 63.6
- **D** 64.0

(Total for Question = 1 mark)

- 15 Which of the following ions would undergo the greatest deflection in a mass spectrometer?
 - $\square \mathbf{A} \quad {}^{35}\mathrm{Cl}^{2+}$
 - $\blacksquare \mathbf{B} \quad {}^{35}\mathrm{Cl}^+$
 - \square C ³⁷Cl⁺
 - \square **D** ³⁵Cl³⁷Cl⁺

- **16** Which of the following values for the mass/charge ratio for singly charged ions would be present in the mass spectrum of propanal, CH₃CH₂CHO, but not of propanone, CH₃COCH₃?
 - **■ A** 15
 - **B** 29 **B** ≥ 29
 - C 43
 - **D** 58

(Total for Question = 1 mark)

- **17** Propanal, CH₃CH₂CHO, and propanone, CH₃COCH₃, are isomers, but only propanal has a significant peak in its mass spectrum at mass/charge ratio
 - 🖾 **A** 15
 - **B** 29
 - **C** 43
 - D 58

(Total for Question = 1 mark)

- **18** Two ketones, $CH_3COCH_2CH_2CH_3$ and $CH_3CH_2COCH_2CH_3$, both have M_r 86. Which peak due to fragmentation into singly charged ions would you expect to be present in the mass spectrum of one but not the other?
 - A 71
 - **B** 57
 - C 43
 - **D** 29